All about programming in GNU/LINUX

Using Semaphores and Mutex in Linux Device drivers to tackle concurency

Semaphores provide a satisfactory solution for issues related to concurrency . Access to critical section is controlled by enforcing threads to hold a lock before entering the critical section , Without a semaphore being unlocked no thread is allowed access to execute in the critical section .

Semaphore is a single integer value bound to two functions P and V . P is called down or some variation of that name and V is called up . Function P is used to lock the critical region and V is used to unlock . Function P decreases the count of semaphores , for example from 1 to 0 . When the value of the semaphore still remains 0 or less no other threads are allowed to execute in the critical region . There are made to wait or even may be put to sleep till the region is unlocked .

Functions of type V releases the semaphores that’s being help , these category of functions increases the value count of the semaphore and may even wake up the processes waiting for the access into the critical region .

Semaphores are generally and mostly used for the purpose of mutual exclusion , that is to make sure that only one thread of execution or a process executes in the critical section .

 Linux Implementation of Semaphores

<asm/semaphore.h> defines several functionalities for semaphore and mutex implementation ( Mutexes are just a special case of semaphores ) .

To initialize a declared semaphore ,

void sema_init(struct semaphore *sema, int val) can be used ,

 this initializes the declared mutex to value val ( The second argument to the function ) ;

But , as i had mentioned earlier semaphores are generally used for implementation of mutex ,

the following two functions declare and initialize the mutex

DECLARE_MUTEX(mutex_name ) ;

DECLARE_MUTEX_LOCKED(mutex_name) ;

 These functions declares mutex named as ‘mutex_name’ , the function DECLARE_MUTEX declares the mutex and initializes it to 1 ( 1 is the unlocked state , a thread or a process can possibly lock the critical region ) , wherein the later function declares the mutex and initializes it to 0 ( 0 is the locked state ) , mutex has to be explicitly unlocked before it can be used for locking .

 

 For initializing the mutex at runtime the following functions can be used ,

void init_MUTEX(struct semaphore *sema ) ;

void init_MUTEX_LOCKED(struct semaphore *sema) ;

 Holding and releasing Mutex ( The version of P [down] and V[up] functions )

 Linux kernel provides three versions of down function

  1. void down(struct semaphore *sema) ;

  2. int down_interruptible(struct semaphore *sema) ;

  3. int down_trylock(struct semaphore *sema ) ;

As briefed earlier down decrements the value of the semaphore , successful exection of any version of down function leads to locking of the critical region of the code , and the thread of execution or the process is said to have acquired the lock . Other user space process trying to access the critical region of code will be made to wait .

In case of the first version of down ( void down_interruptible() ) , the user space process waiting for the mutex to be released cannot to interrupted , it’ll be running in a dreaded state . This is not desirable in many cases , so the second version of down allows the waiting user space process to be interrupted .

The third version can used to test and lock , if the lock is already being held the function returns with a negative value , If no other thread is holding the lock , the lock will be acquired . Using down_trylock() the process wont wait for the acquired lock to be released , it returns immediately .

void up(struct semaphore * sema) is used to unlock the acquired lock and even wake up the processes waiting on the semaphore .

When executing in the critical region on occurance of error its very important to unlock the region before returning

 

 

 

 

 

Advertisements

One response

  1. karthik bhat

    Amazing. Good writeup .Should make my hands dirty now

    July 11, 2013 at 12:32 pm

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s